Developing an Al-driven tool to analyse expressed emotion in parental speech: key results and stakeholder perspectives

Zoë Firth¹, Nicholas Cummins¹, Bahman Mirheidari², Tassadaq Hussain¹, Christine Aicardi³, Stephen Oram⁴, Alice Wickersham¹, Helen L. Fisher^{1,5}, Johnny Downs^{1,6} 1. Institute of Psychiatry, Psychology & Neuroscience, King's College London; 2. School of Computer Science, University of Sheffield; 3. Department of Global Health & Social Medicine, King's College London; 4. Independent Applied Science Fiction Practitioner, London, UK; 5. ESRC Centre for Society and Mental Health, King's College London; 6. South London and Maudsley NHS Foundation Trust, London, UK

'Expressed emotion' (EE): the type and intensity of emotions expressed by a caregiver about their child¹ Index of 'the emotional climate of the parent-child relationship'²

Parental EE during childhood predicts children's later mental health outcomes², indicating it could be used to target early mental health intervention & prevention for children and families

Cohort data

E-Risk Longitudinal Twin Study

- Twin births 1994-5, England & Wales
- 1,116 families; 2,232 twins (same-

Speech data

240 Five Minute Speech Sample (FMSS) recordings

- Unstructured interviews with mothers
- Recorded when twins were 10 years old

Problem: resource-intensity of coding EE means that measuring EE in clinical settings has limited feasibility

Research question: Can we build an Aldriven tool that can analyse expressed emotion in parents' speech as effectively as humans?

Needed public perspectives on our research, but abstraction &

'A Mother's

Acoustic features

Gender

Demographics

Aqe

240 10

Classifier	Features	Accuracy	Sensitivity	Specificity	Classifier	Features	Accuracy	Sensitivity	Specificity
			(high)	(high)				(high)	(high)
RF	eGeMAPS	0.700	0.881	0.338	LR	TFIDF	0.663	0.794	0.400
LR	Spec	0.692	0.875	0.325	Linear SVM	TFIDF	0.658	0.806	0.363
LR	AVEC13	0.608	0.581	0.663	Linear SVM	RoBERTa	0.575	0.644	0.438
RF	IS9	0.717	0.956	0.238	LR	RoBERTa	0.575	0.656	0.413
LR	IS13	0.600	0.588	0.625	Linear SVM	ALBERT	0.567	0.606	0.488

Fusion [acoustic & textual] 🗹 Score classification allia

Zygosity

57.5% female 60% monozygotic

Classifier	Features	Accuracy	Sensitivity (high)	Specificity (high)
Linear SVM	eGeMAPS + TFIDF	0.654	0.675	0.613
LR	Spec + TFIDF	0.654	0.675	0.613
Linear SVM	Spec + DistilBERT	0.650	0.681	0.588
LR	Spec + Doc2Vec	0.646	0.663	0.613
Linear SVM	eGeMAPS + TFIDF	0.646	0.675	0.588

Textual features

71

4

32

65

(high) |2

55

cificity	Classifier	Features	Accuracy	Sensitivity	Specificity
igh)				(high)	(high)
338	LR	TFIDF	0.663	0.794	0.400
325	Linear SVM	TFIDF	0.658	0.806	0.363
663	Linear SVM	RoBERTa	0.575	0.644	0.438
238	LR	RoBERTa	0.575	0.656	0.413
625	Linear SVM	ALBERT	0.567	0.606	0.488

LR = Logistic Regression, RF = Random Forest, SVM = Support Vector Machines

- Superior performance based on binary classification of EE scores (0/1 vs. 2/3/4/5)
- Acoustic features performed stronger than textual ones
- Textual did not contribute as much as expected to performance of fusion model

- complexity may affect how people engage with AI methods⁴
- We worked with Stephen Oram⁵, a near-future science fiction author, to write 2 stories about possible futures of our project
- Stories developed after consultation with clinicians, young people, parents, and researchers on the project
- Stories presented by author at 9 \bullet further events (e.g., literature festivals, seminars)

Nightmare'

'Standard Deviations'

Brought these 2 stories to separate workshops with young people & parents

Organisation	Attendees	#
Young Carers' Group (Carers' Hub Lambeth)	Young carers (aged 13-19)	8
Adolescent Mental Health Advisory Group	Young people with mental	4
(NIHR Maudsley BRC)	illness (aged 13-18)	
<i>Autistica</i>	Parents of autistic children	6

Parents

Concerns over ability of one FMSS to capture variability & complexity of parenting

Young people

- Concerns over accuracy of parents' accounts
- Preference for clinician

Despite lower accuracy, fusion model has more stable metrics than acoustic

Automatic Speech Recognition

- Fine-tuning of open-source models, compared on WER (Word Error Rate)
- Whisper-large-v2 had best WER (19.52% before fine-tuning, 10.53% after fine-tuning) Sensitivity: 0.675 **Specificity:** 0.613 **Accuracy:** 0.654
- Automatic speech recognition may be viable pathway over manual transcription, despite low-quality data

Need for continuous, dynamic models of consent Key context: timely access to assessment and treatment Key themes Spontaneous suggestions for applications of Al in healthcare

Predicting mental health outcomes: is it useful for the child? Self-fulfilling prophecy effect?

For references and acknowledgments, please scan the QR code

- Automated methods show promise for analysis of 'expressed emotion' negativity
- Both textual and acoustic features contribute to classification, with fusion models showing strongest performance
- Variety of public attitudes to use of Al-driven technology in healthcare, with a focus on implementation & accessibility
- Creative methods such as storytelling are productive ways of engaging the public in science
- Future work: gather and analyse FMSS data from multiple sites at scale